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This paper is concerned with theoretical predictions, given the upstream conditions 
from a rigid obstacle of arbitrary shape, of the downstream flow beyond the obstacle 
for an incompressible inviscid fluid sheet under the action of gravity. The fluid sheet 
flows upstream over a level bottom, continues to flow over (or under) an obstacle 
leading to a downstream region over a level bottom. In the absence of surface tension, 
a nonlinear st, ady-state solution of the problem is used to predict the downstream 
values of the free-surface wave height for the full range of the far-upstream Froude 
number. The general results obtained are then applied to a special case of fluid flowing 
over a stationary hump leading to a supercritical flow far downstream and detailed 
numerical comparison is made with available experimental results, with very good 
agreement. 

1. Introduction 
This paper is concerned with steady two-dimensional flow of an incompressible 

inviscid fluid sheet under the action of gravity past a rigid obstacle of arbitrary shape. 
The obstacle may be a hump over a bottom, a moving object at the top free surface, 
or even a partially submerged object such as a sluice gate. The fluid sheet flows 
upstream over a level bottom (labelled I in figure l), continues to flow over (or under) 
a region occupied by the obstacle (I1 in figure 1) leading to a downstream region (I11 
in figure 1). In both the upstream and downstream regions from the obstacle, the 
bottom surfaces are assumed to be level and the free top surfaces subjected to a 
constant atmospheric pressure. In the absence of the effect of surface tension and for 
given upstream conditions from the obstacle, the nonlinear differential equation for 
the wave height in the downstream region is integrated leaving only one undetermined 
constant 8,. It is then shown that S, possesses upper and lower bounds beyond which 
values a steady-state solution cannot exist in the downstream region. These bounds 
on S, play a significant role when the application of the theory is considered in $5. 

In $2, we briefly consider a nonlinear differential equation (see (2.3)) for the 
free-surface wave height h appropriate for a two-dimensional steady motion confined 
to the (x, 2)-plane of the rectangular Cartesian coordinate system (x, y, 2) .  This 
differential equation can be derived from the system of basic equations of a direct 
theory of constrained fluid sheets (Green & Naghdi 1976a, 1977), and special cases 
of this differential equation can be brought into correspondence with those derived 
and used in a number of related previous studies, notably by Benjamin & Lighthill 
(1954), Benjamin (1956), Green & Naghdi (19764 and Naghdi & Rubin (1981). Also 
a brief comparison is made in $2 between the differential equation (2.3) of the present 
paper and the corresponding Boussinesq equation and Saint-Venant equation for 
steady flows. 
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P~CURE 1 .  A sketch of fluid flow past an obstacle in the ( x ,  z)-plane of a rectangular Cartesian 
coordinate system showing the upstream, the transition and the downstream regions, labelled I, 11, 
111, respectively. Also shown are the vertical height h, and horizontal velocity u, far upstream. 
Depending on the type of obstacle occupying the transition region I1 (for example, the shape of 
the hump and the maximum height of the bottom surface of the fluid sheet), the downstream flow 
may approach: (a) a uniform flow of height h, and velocity u,,, i.e. AB,, (b )  a standing cnoidal wave, 
i.e. AB,, or (c) a unifoim flow of diminishing height, i.e. AB,. 

The problem, as stated in the first paragraph of this section, is formulated in $3 
and this is followed with a brief discussion of the upstream flow. Assuming that the 
far upstream is a t  a uniform height h, and moving with constant velocity u,, the flow 
in the upstream region of the obstacle can be completely characterized in terms of 
h, and the far-upstream Froude number F defined by 

where g denotes the constant gravitational acceleration. Depending on whether 
k'2 < 1, = 1, or > 1, the far-upstream flow is referred to as subcritical, critical, or 
supercritical, respectively. 

Regardless of the shape of the rigid obstacle, and on the assumption that there 
is no mass loss or energy loss, with thc use of the differential equation for the wave 
height h derived in $2, i t  is shown in $4 that  the downstream flow is completely 
determined if the value of one of the constants of integration, namely S,, is known. 
For given upstream conditions, the constant S, can be determined from h and its 
gradient at any one point in the downstream region. In  particular, for given 
far-upstream values of information h, and F2 < 1, a steady flow is possible in the 
downstream region only if S, is boundcd from above and below by the values S; and 
S; given by (4.7) and (4.10) respectively [see also (4.15) and (4.16)], where a parameter 
y = :F2 [l + (1 + (8/P))t] occurs only in the value of S;. For the upper-bound value 
S;, the downstream flow is subcritical with a uniform depth h, everywhere. On the 
other hand, for the lower-bound value S;, the downstream flow is supercritical. 
approaching a uniform flow of depth yh, and a Froude number F l y 3  far downstream. 
For a value of S; < S, < S;, the downstream flow has the form of stationary cnoidal 
waves. Somewhat similar conclusions can be arrived a t  when the far-upstream 
information is h, and F2 > 1 or F2 = 1, but these cases are not dealt with here. 

In $5,  wc deal with a special case of our general developments of $ 4  by considering 
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a fluid sheet flowing over a stationary bell-shaped hump. Making use of the fact that 
the constant S, for the downstream flow is bounded from above and below, it can 
be demonstrated that a steady-state flow is not possible if the upstream fluid height 
is below a certain value. Furthermore, when the parameters describing the shape of 
the obstacle are chosen so that the obstacle is identical with that in the experiment 
of Sivakumaran, Tingsanchali & Hosking (1983), the calculated results for minimum 
values of h, that render the downstream flow supercritical are found to be in very good 
agreement with the experimental data. 

2. Differential equation for the free-surface wave height 
For steady two-dimensional flow of an incompressible, homogeneous, inviscid fluid 

sheet under the action of gravity we obtain, in this section, a nonlinear differential 
equation for the free-surface wave height h over a variable bottom of arbitrary profile. 
We use the basic equations of the restricted theory of a directed fluid sheet (Green 
& Naghdi 1976a, 1977), to derive a differential equation which is utilized in the rest 
of the paper. A comparison will be indicated later in this section between the nature 
of this differential equation and other such differential equations used in the current 
literature for applications to problems similar to that discussed in $5. 

In order to maintain closer continuity with some of the references cited (e.g. 
Benjamin & Lighthill 1954; Benjamin 1956), we adopt here a somewhat different 
notation from those utilized previously (e.g. Green & Naghdi 1976a, b, 1977). Let 
xi = (x, y, z ) ,  (i = 1 , 2 ,  3 ) ,  be a set of fixed rectangular Cartesian-coordinate axes and 
denote by e, = (el, e,, e,) the associated orthonormal base vectors. Further, for 
two-dimensional flow confined to the (2, %)-plane, let u = u(x)  denote the horizontal 
component of the velocity, h = h(x) the free-surface wave height, H = H ( x )  the 
vertical distance to the variable bottom surface of the fluid, p* the constant mass 
density of incompressible fluid, and jj the pressure at the top surface. Also, in the 
present paper, we assume that the far-upstream flow approaches that of a uniform 
flow, i.e. 

Then, for an incompressible fluid, the conservation of mass can be reduced to 

u+uo = const., h+h, = const., H + O  as x+- 00. (2 .1)  

hu = Q = h, u,, (2.2a, b) 

where Q is a constant which has been determined from the boundary condition (2.1). 
[Our present notations u, h, H ,  p*, $, Q correspond respectively to u, 4, a, p*, $3, k 
of a number of previous papers, e.g. Green & Naghdi 1977, Naghdi & Rubin 19811. 
Next, with $jm denoting the top-surface pressure at  x = - 00 and after using (2 .2b) ,  
the equations of motion of the theory can be reduced to a Bernoulli-type integral of 
the form 

with 

If the bottom surface of the fluid is level ( H  = H ,  = H,, = 0) and $j is taken to be 
the constant atmospheric pressure, then the equation resulting from (2.3) after 
substitution for u from ( 2 . 2 ~ )  and after an integration can be brought into 
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correspondence with one given by Green & Naghdi (19763, §7), or with that derived 
earlier by Benjamin & Lighthill (1954) from the three-dimensional equations for long 
waves. 

The Boussinesq equations and the corresponding equations in the theory of Green 
& Naghdi (1976a, b,  1977) for unsteady flow have been compared previously (Naghdi 
1979, p. 514), and a further discussion on the subject in the context of weakly 
dispersive and fully nonlinear gravity waves is contained in a recent paper of Miles 
& Salmon (1985). For steady flow confined to  the (2, 2)-plane, the first of the two 
Boussinesq equations is the same as ( 2 . 2 ~ )  and the second of the Boussinesq equations 
can be reduced to a Bernoulli integral of the form 

@'+g(h--h,) = h:. (2.5) 

Equation (2.5) may be compared with (2.3) after setting H = 0 and$ = 0 everywhere. 
It is clear that  for steady flow the Boussinesq equations do not contain any part of 
the nonlinear terms represented by the function x in (2.4), although for unsteady flow 
the second of the Boussinesq equations does possess a nonlinear term which vanishes 
in the case of steady flow. It can be easily verified that the Boussinesq equations do 
not admit non-trivial steady-state solutions ; and hence, for steady flow, admit no 
wave-like solution. 

Another system of equations attributed to  Saint-Venant, which are often used in 
the discussion of open-channel-flow problems, are similar to those of Boussinesq. I n  
fact, for steady flow, the first of the two Saint-Venant equations is the same as ( 2 . 2 ~ )  
and the second is similar t o  (2.5) with the second term on the left-hand side of (2.5) 
replaced by g(h-  h,+ H )  with H = H ( s )  representing the effect of variable bottom. 
A generalization of Saint-Venant equations has been given by Dressler (1978) and 
an alternative derivation of Dressler's development is contained in a paper of 
Sivakumaran, Hosking & Tingsanchali (1981 ), who cite additional related references. 
As in the case of the Boussinesq equations, neither the Saint-Venant equations nor 
their generalizations (Sivakumaran et al. 1981) admit wave-like solutions in steady 
flow. It may be noted, however, that if higher-order terms are retained in the 
derivation of Saint-Venant equations, then a steady periodic solution is possible. 

Before closing this section, i t  should be noted that the expressions for the pressure 
p at the bottom surface 2 = H and the expression for the pressure p (which can be 
identified as the integrated pressure of the three-dimensional theory) in the theory 
of Green & Naghdi (1976a, 6 ,  1977). with the use of the equations of motion can be 
expressed in terms of h and h,. We do not record these expressions here, but note 
for later reference that they depend also on the pressure $ at the top surface, the 
acceleration of gravity, as well as the effect of the bottom topography in terms of 
H and its derivatives. 

3. Formulation of the problem: the upstream flow 
A statement of the problem under consideration is given in the opening paragraph 

of Q 1 .  With reference to figure 1, we take the origin 0 of the (2, y)-coordinate axes 
to coincide with a convenient reference point within the transition region occupied 
by the obstacle (for example the point, corresponding to the maximum height depicted 
in figure 1 ) .  Furthermore, we denote the points on the left and right of the origin, 
which demark the transition betwcen the level bottoms and the region occupied by 
the obstacle, by x = x1 and x = x2 .  The physical region of space then conveniently 
separates into three parts : ( i )  the upstream region - 00 < x < x1 (labelled I in figure l ) ,  
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(ii) the transition region x1 < x < x2 (I1 in figure 1 )  and (iii) the downstream region 
x2 < x < co (I11 in figure 1).  It follows that (in the absence of surface tension) the 
pressure @ a t  the top surface equals the atmospheric pressure p ,  in regions I and 111, 
while the pressure p at the bottom surface is to be determined for all three regions. 

If it is assumed that there are no discontinuities in mass and energy, i.e. if there 
is no gain or loss in mass or energy at any point of the physical region of space under 
consideration, (2 .3)  is valid in each of the three regions I ,  11,111, with the constant 
Q in (2 .4)  specified by (2 .2b) .  The truth of this statement can easily be proved with 
the help of the appropriate jump conditions (see Appendix of Naghdi & Rubin 1981) 
for a directed fluid sheet. 

We now turn our attention to a brief discussion of the upstream flow, the conditions 
for which may be summarized as: 

(3.1) 

Since H = H ,  = H,, = 0 in the interval -co < x < xl, for region I the 
differential equation (2.3) after substitution for u in terms of h from (2a )  reduces to 

Region I ( - 00 < z < xl): @ = p, ,  ji to be determined, H = 0. 

hh,,-+hi+f(h) = 0, f ( h )  = F2hg 3h3 3 (~+j$J(Sp+; ,  2 (3.2a,  b )  

where in obtaining (3 .2)  we have set both @ and grn equal to the constant atmospheric 
pressure p ,  and taken this to be equal to zero without loss in generality, and where 
F denotes the far-upstream Froude number defined by ( 1 . 1 ) .  

By a standard procedure ( 3 . 2 ~ )  can be integrated once more to yield 

where S,  is a constant of integration. Again the constant S, can be determined from 
the far-upstream conditions as x+- co and is given by 

S,  = +Fgh;(2+;) .  (3 .4)  

Clearly, with the use of (3 .4) ,  the differential equation (3 .3)  can be written as 

3 
hi = (h-h,)2 ( F h , - h ) .  (3 .5)  

The solutions of (3.5) in region I depend on the value of the far-upstream Froude 
number F and are well known for the full range of values of F (< 1 ,  = 1 ,  > I ) .  In 
particular, we recall here that if F < 1 ,  the only possible steady-state solution of (3 .5)  
subject to the far-upstream conditions stated in (2.1) is 

h = h, = const. (3 .6)  

[Results of the type which follow from (3 .3)  and (3.5) are well known and have been 
discussed previously by Benjamin & Lighthill 1954 and Benjamin 19561. 

4. The downstream flow 
We postpone consideration of the flow in region I1 and proceed now to some 

developments pertaining to the nature of the solution in region I11 downstream from 
the obstacle. As indicated earlier, the differential equation for the wave height h is 
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again given by ( 3 . 2 ~ ) .  This can be integrated to yield an equation similar in form 
to (3.3), namely 

h;+q(h) = 0 ,  q(h) =-(--)3-3(1+z)(L)2+x(A)-3, 3 h  (4.la,  b )  F ho P h, Pgh: h, 

where S, is another constant of integration. [The differential equation (4.1 a )  has the 
same form as Eq. (20) of Benjamin & Lighthill 19541. Elimination of h: between (4.1 a )  
and (3.2a), together with the use of (3.2b), results in the following interesting relation: 

1 &7 h,,+-- = 0. 
2 dh 

With the help of (4 . la ,  b)  and (4.2), it can be shown by a standard argument that 
when q(h) has only one positive real root h = h, (say), which is not a double or triple 
root, then h must vanish a t  some point in the region x 2  < x < co and a steady-state 
solution is not possible downstream. For later reference, we observe here that in the 
case of a level bottom ( H  = H, = H,, = 0) and when9 = p ,  = 0, i t  can be shown with 
the help of (4.1) and the basic equations of motion that 

(4.3a, b )  

respectively. 
Keeping in mind the observations made in the preceding paragraph, we now 

proceed to obtain some analytical results in region I11 for the downstream flow. We 
begin by examining the nature of the solution when the flow approaches a uniform 
flow far downstream, i.e. when h approaches a constant value. Since h, and h,, both 
approach zero far downstream, it follows from ( 3 . 2 ~ )  that far downstream h must 
approach a root of the function f ( h )  given by (3.2b). It can be easily verified that the 
right-hand side of (3.2b) can be factorized in the form 

so that yh, is a root of (3.2 b) and y - a function of P - i s  defined by 

y = y ( P ) = t F  =3F+(F4+8F) : ] .  (4.5a, b)  

We may now conclude that the quantity 2F- y is necessarily negative, i.e. 

It then follows from f ( h )  = 0 with f given by (4.4) that, if h approaches a constant 
value, then either h-th,  as x+ CQ, or h = yh, as x-+ 00. Moreover, i t  can be shown 
that for the full range of values of the Froude number (F < 1, > 1, = l), y must satisfy 
the conditions 

F < y < l  f o r F < 1 ,  i < y < F  f o r F > l ,  y = l  f o r P = l .  

I n  the remainder of this section, we discuss in some detail the character of the 
downstream flow only for subcritical values of the far-upstream Froude number, i.e. 
for F c 1 .  
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4.1. Solution for downstreamjlow when F2 -= 1 

If the downstream flow approaches uniform flow, with equilibrium height h,, then 
the constant S, can be evaluated from (4.1 b) by setting h, = 0 and h = h,, and is 
given by 

X,=!jPgh; ( 2+- 3 . (4.7) 

Since the above value of S, is identical to S, in (3.4), (4.1) in this case reduces to (3.5). 
Moreover, since F2 < 1, we again obtain a solution given by (3.6), i.e. h = h, 
everywhere for x > x2.  On the other hand, if the downstream flow approaches a 
uniform flow with equilibrium height yh,, then with h, = 0 and h = yh, the value of 
S, from (4.1) is found to be 

From the fact that h = yh, is a root off(h) = 0 with f (h)  given by (3.2b), it follows 
that y must satisfy 

with the help of which (4.8) can be rewritten as 

(4.10) 

Next, after substituting for S, from (4.10) into (4.1 b) and making use of (4.9), the 
expression for q(h) can be factorized in the form 

q(h) = - 3 ( h - y h o ) 2 ( h - A ) .  F h  

F h i  Y 2  
(4.11) 

With q(h) written in the form (4.11), the differential equation ( 4 . 1 ~ )  assumes an 
identical form to (3.5) of region I if (h,, F) in the latter are replaced by 

h, = yh,, P = F" (4.12 a ,  b)  
Y3 ' 

respectively. We may refer to 6, as the far-downstream wave height and to F as the 
far-downstream Froude number. By direct calculation, it can be verified from (4.12 b) 
and (4.5a) that 

F=64F-4 1+ 1+- > 1  f o r F < l .  [ ( :)"I-" 
(4.13) 

Hence, the downstream flow is supercritical with P > 1 for all subcritical far-upstream 
conditions. It follows that one solution of (4.1 a) with q(h) given by (4.11) is the trivial 
solution for which h, = 0 and h takes the value h, in ( 4 . 1 2 ~ ) .  Further, when h, =+ 0 
everywhere, two possible solutions of (4.1 a) are 

(4.14b) 



230 P. M .  Naghdi and L. Vongsarnpigoon 

where a4 and a5 are constants of integration to be determined from the continuity 
requirements at x = x,. We note that ( 4 . 1 4 ~ )  is a solitary wave so that h > ho 
everywhere and h, can be either positive or negative, while bounded from above and 
below. On the other hand, (4.14b) represents a wave with monotonically increasing 
height so that h < ho everywhere and h, is always positive but unbounded. Thus, the 
form of the solution in region 111 for S, = 8; can be established from the knowledge 
of h and h, a t  the beginning of region 111. These solutions have been utilized 
previously in different contexts, e.g. Benjamin (1956), Caulk (1976) and Naghdi & 
Rubin (1982). 

Clearly the solution of (4.la) depends on the characteristics of the function q(h) 
and hence on the value of the constant S,. Furthermore, we expect that the values 
of S, given by (4.7) and (4.10) represent respectively, the upper and lower bounds 
for S,. Accordingly, a steady flow is possible in the downstream region only if S,  is 
bounded from above and below by 

s; < s, < s;, 
where 

(4.15) 

S; = Right-hand side of (4.7), Sg = Right-hand side of (4.10). (4.16a, b )  

This is indeed the case and it can be shown by either algebraic or geometrical 
argument that, for values of S, > S; and S, < S;, the function q(h) has only one 
positive real root which is not a double or triple root. As noted earlier, in this case, 
a steady flow is not possible since the waveheight h would vanish at some point 
x, < x < CQ. Finally, for intermediate values of Sg < S, < S;, the function q(h) has 
three positive roots (hl ,  h,, h,), such tha t  h, > h, > h,, 

Fh, > h, > h, > h, > yh, > h, > P h , ,  
Y2 

and then ( 4 . 1 ~ )  can be written as 
CI 
3 

hit+- F h :  (h-h , )  (h-h,)  (h-h,)  = 0. 

(4.17) 

(4.18) 

Integration of (4.18) results in the following cnoidal wave solution (see p. 597 of 
Abramowitz & Stegun 1965): 

3 t  
h =  h,+(h,-h,)  cn2 i(h,-h,)i(-)  P h :  (x-a,)},  (4.19) 

where a, is the value of x at which h = h, and cn is the Jacobian elliptic function 
with modulus m = (h, - h,) / (h,  - h,). 

It follows from the foregoing development that the solution for steady flow in 
region 111 is determined once the value of the constant S, is known. Thus, if the value 
of the wave height h and its derivative h, are known at some point in region 111 
such as at x = x,, then the constant S,  from (4.la,  b )  is calculated to be 

S, = iPgh; {  1 +( 1 +$) ( e y - m - $ h : } / h .  h3 
(4.20) 

This completes our discussion of the steady flow in region I11 for subcritical far- 
upstream Froude number F < 1 .  As noted earlier, the corresponding developments 
for F > 1 and F = 1 can be presented similarly, but these will not be considered 
here. 
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5. Flow over a curved bed 
As an application of the developments of $524,  subject to the far upstream 

condition that P < 1 ,  we consider a steady flow over a bottom irregularity, such as 
a bell-shaped hump. A problem of this kind is usually treated by an ‘approximate’ 
elementary theory in which the pressure at  any point in the fluid is assumed to be 
hydrostatic (see, for example, $2.6 of Henderson 1966). In the context of the theory 
of a directed fluid sheet, this is equivalent to neglecting the effect of vertical inertia 
in the system of basic equations. With this approximation, the elementary theory 
cannot account for a cnoidal wave-like motion downstream from the obstacle. Here, 
we also call attention to a related problem concerning the upstream influence 
discussed by Benjamin (1970). 

By way of additional background, we recall that recently Sivakumaran et al. (1983) 
have reported some experimental results for a steady shallow flow which becomes 
supercritical downstream from the obstacle and have used a set of equations, first 
derived by Dressler (1978) and later rederived in a different manner by them 
(Sivakumaran et al. 1981), for a comparison with their experiments. Here we make 
use of their experimental results in order to assess the predictive capability of the 
development of $4. [It may be noted that the theoretical development in Sivakumaran 
et al. (1981) is based on an approach which is different from the basic theory of $2 
and our development in $4. It should be noted also that Sivakumaran et al. (1983) 
obtained very good agreement of the measured free-surface profile and the pressure 
at  the bed with the use of Dressler’s equations.] 

Preliminary to our main objective in this section, it is of interest to demonstrate 
that, for a given curved bed of any shape with (finite) arbitrary height, not all possible 
combination of the far-upstream conditions (h,, P) will lead to a downstream flow 
approaching a supercritical uniform flow. To this end, we first note that the pressure 
p acts along the normal to the curved bed, so that the force (due to the bottom 
pressure) over a small arclength ds of the bed profile and per unit width is Fds. It 
then follows that the horizontal component of this force is jiHz dx and its resultant 
along the e, direction, called drag and denoted by 9, is given by 

This represents the force (or drag) resisting the flow, or equivalently the resultant 
force arising from the presence of the curved bed acting on the fluid. Also, the minus 
sign preceding 9 in (5.1) is introduced for convenience, rendering 9 positive. 
Observing that the integrand in (5.1) occurs also in the x-component of the 
momentum equation (see also the remarks just before (2.1)), then with $ = p, = 0 
and use of (4.3b) and its analogue in region I, we have the following expressions for 
the pressure p at points x = xl, x2: 

p = p* [sl -:I (in region I), 

p =p* S -- (in region 111). 
[ 3  :I 

( 5 . 2 ~ )  

(5 .2b )  

Next, recalling again the x-component of the momentum equation and using (2.1), 
from (5.1) we obtain 

-9 = l: [p+p*Qu],dx = 
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which, with the help of (5.2a, b )  and after inserting the value S, given by (3 .5) ,  yields 

Clearly, if the right-hand side of (5 .3)  yields a value S;, then the downstream flow 
for x > x2 will be a uniform flow with height h, everywhere. On the other hand, if 
the right-hand side of (5.3) yields a value S;, then the downstream flow for x > x2 
will approach a supercritical uniform flow of height yh,. Further, although p in (5.1) 
can be expressed in terms of h, H and their derivatives, in general i t  is not possible 
to carry out the integration analytically and obtain an expression for 9 in analytical 
form. However, i t  is evident that  9 must depend on the far-upstream conditions 
(h,, F2) and also on the geometry of the bottom topography. Thus, for a given curved 
bed only certain combinations of the far-upstream conditions (h,, F 2 )  could lead to 
a downstream flow approaching a supercritical uniform flow, i.e. only particular 
combinations of (ho, P) in steady flow would render the right-hand side of (5 .3)  equal 

I n  order to  demonstrate the quantitative effect of a curved bed on the downstream 
flow, let the bottom surface of the fluid in the transition region I1 be specified by 
a bell-shaped hump (such as that depicted in figure 1)  in the form 

to s;. 

H = H ,  exp ( -bx2)  (2, < x < x 2 ) ,  (5.4) 

where H ,  and b are constants. For a complete solution of the problem for all 
x( - co < z < a), the solution in regions I, IT and IT1 must be matched a t  the 
transition points x1 and x 2 .  Such matching may be accomplished by using the 
standard jump conditions associated with the integral balance laws of the theory of 
a directed fluid sheet. However, for the purpose of this section, it will suffice to assume 
that the bottom surfaces of the fluid sheets are continuous and smooth, so that with 
the use of continuity arguments the matching can be effected by joining the solution 
in region I1 with those in regions T and I11 smoothly at the transition points. Strictly 
speaking, the right-hand side of (5.4) vanishes only as x+ & co. However, the 
exponential function exp ( - bx2) approaches zero very rapidly so that by choosing 
x1 and x2 (the boundary points of the transition region in figure 1 )  sufficiently far from 
the origin, the resulting error will be minimal in assuming that H ,  H,, H,, all vanish 
at x, and x2.t 

The experiments of Sivakumaran et al. (1983) were carried out over a curved bed 
specified by 

H = Ho exp[ -5 (%)‘I, H ,  = 20 cm, b = i(24)2. (5.5a, b, c )  

They give several values of the flow rate Q and total head E [or ‘energy head’ in the 
terminology of Sivakumaran et al. (1983)]$ defined by 

1 x  

such that the flow downstream is a supercritical flow with diminishing height for all 
cases. For the purposes of comparison with experimental results of Sivakumaran et al. 

t For example, if b is chosen to be 3 !z 0.347, then a t  z = f 10 the exponential function 

1 Sivakumaran et d ’ s  (1983) notation h cos0, 6, q,  D and E correspond, respectively, to 
exp ( -bz2)  will have the value 8 x 10-l6. 

h, H, Q, h, and E of the present paper. 
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Experimental data of Sivakumaran et al. (1983) 
F2 h, (cm) 6, = h,/Ho 

0.032 34.3 1.72 
0.028 33.6 1.68 
0.020 31.4 1.57 
0.013 29.4 1.47 
0.007 27.1 1.36 

TABLE 1.  Converted experimental data of Sivakumaran et al. (1983) for a steady flow over a 
bell-shaped hump characterized by (5.5) such that the downstream flow becomes supercritical with 
diminishing wave height approaching a uniform flow far upstream (this would be similar to a flow 
pattern depicted by AB, in figure 1). 

(1983) ,  it  is convenient to convert their upstream data from Q and E to h, and 
P. In  order to effect this conversion, we solve for h, from the first of (5.6) and then 
calculate the square of Froude number from the expression P = Q2/gh;. The 
upstream measured values (after conversion) of P and h, are listed in the first two 
columns of table 1. As will become evident presently, we calculate the normalized 
height h,/H,, where H, is the value given by (5.5b). The corresponding experimental 
values are recorded in the third column of table 1 and represent the minimum height 
(relative to the bottom surface) such that the flow becomes supercritical far 
downstream, i.e. h+h, as x+co. 

We recall that the differential equation for the free-surface wave height in region I1 
is given by (2 .3 )  after identifying $ with the constant atmospheric pressure, which 
we set equal to zero. Then, after substitution for u in terms of h from (2 .1) ,  (2 .3)  
becomes 

where from (5.4) the derivatives H ,  and H,, in terms of H are given by 

H,  = ( - 2 b ~ )  H ,  H,, = (4b2xa-2b) H .  (5.8a, b) 

Since the far-upstream conditions are restricted to be subcritical (P < l) ,  the only 
possible solution in region I (x < xl) is h = h, everywhere. It then follows that in the 
present development the appropriate continuity conditions to be satisfied by the 
solution of (5.7) are 

h = h , ,  h ,=O a t x = x l .  (5 .9 )  

Although the bottom profile specified by (5.4) is relatively simple and well behaved, 
it is still difficult to obtain an analytical solution and h must be determined 
numerically in region 11. Since we are interested mainly in the effect of the size of 
the obstacle (e.g. its vertical height) on the downstream flow, it is desirable to give 
here some background on the expected effect ofHo (the height of the bell-shaped hump) 
on the downstream flow. Recalling from $4 that the characteristics of the flow in 
region I11 are known once the constant S, is specified, we only need to determine 
the effect of H ,  on S, for steady flow calculated at x = x2 from (4.20) for the admissible 
range of the far-upstream conditions (h,, P ) .  If S, = S; at x2, then h = h, everywhere 
in the downstream region. For a relatively large value of h, (i.e. for h, % H ) ,  we expect 
the value of S, to be fairly close to S; and the flow will be approximately uniform. 
Actually, if the value of S, is very close, but not equal, to S; the two largest roots 
of q(h)  will be close to one another and the flow in region I11 will be represented by 
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a cnoidal wave with a very small amplitude. As the value of A, decreases while 
F remains fixed, we expect the difference between S, and S: to increase and also 
the amplitude of the cnoidal wave to  become larger. Eventually, at some fixed value 
of h, = h i ,  the value of the constant S3 may coincide with S;, where S; is defined 
by (4 .16b) ,  and the flow downstream becomes supercritical with h approaching the 
value KO = yh, as x+ a. For values of h, < h:, there is no solution for steady flow 
in the region 111 as the value of S,, if i t  exists, becomes less than S;. The foregoing 
discussion excludes, of course, a situation in which the flow of region I1 separates from 
the bottom surface (creating a cavity) or the wave height vanishes before the flow 
reaches the transition boundary a t  x = x2. It follows that h,* may be taken as the 
minimum value of h,, i.e. 

h: = min of h, when S, = S;. (5.10) 

Further, it is evident that  the value of h,* in steady flow depends on the far-upstream 
Froude number and we expect that  the higher the value of the far upstream u, 
(corresponding to  the higher value of F )  the higher will be the value of h:. 

I n  carrying out a numerical integration of (5.7), i t  is desirable to express all relevant 
quantities in non-dimensional form. For this purpose, we define 

(5 .11a,  b, c )  

(5.12a, b,  c )  

With the use of (5 .11)  and (5 .12) ,  a differential equation of the same form as (5.7) 
results, together with the continuity requirements for the solution i similar t o  (5.9), 
but with variables such as h,, H replaced with i2, I?, etc. In  this way, if we identify 
H with the profile (5.5a), then the non-dimensionalized A is 

I? = exp [ - $21. (5.13) 

Then, for a fixed value of F < 1 ,  we may calculate the quantities 

(5 .14a,  b )  

which are, respectively, the upper and lower bound values for the constant 
(2/F2gh;)S3 [see (4 .16a,  b ) ]  associated with a uniform flow and a supercritical flow 
approaching the height h = KO far downstr:am. For a given value of h, the 
non-dimensionalized differential equation for h is integrated numerically (with the 
aid of a computer program) from 2, to  22. Thus, in terms of known at 5& 
and recalling (4 .20 ) ,  the value of S,  at 2, is given by 

and 

4 = S3,2=.&. (5.15 b) 

Clearly, if the value of g3 is close to  A!!;, the flow downstream is close to a uniform 
flow with h = h,. Whether or not this value of t?, a t  g2 leads to a supercritical flow 
can be ascertained by simply comparing f13 with the value S; in (5 .14b) .  If not, we 
proceed to determine a new value for L?, P y  repeating the integration process for the 
same fixed values of F2 but decreasing h, to a new value. If necessary, this process 
is repeated and A, is decreased until the new value of g3 reaches the value S; in (5.14b).  
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FIGURE 2. A plot of A:, representing the minimum upstream height ho/H,  (normalized with respect 
to the maximum height of the stationary bell-shaped hump on the bottom surface) below which 
no steady downstream flow is possible, versus the square of the Froude number FL. The main part 
depicts a plot of A: in the range 0.01 < Fp < 0.06 with data points -0- from experiments of 
Sivakumaran et al. (1983) recorded in table 1 ,  while the inset shows the extension of variation of 
A: in the range 0.1 < FL < 0.5. The solid lines represent the predicted results calculated from (5.4), 
(5.5) and (5.15) and the dashed lines are calculated from the elementary theory referred to in 
the text. 

This value of h, (for given F) represents the minimum upstream height A: that: (i) 
leads to a supercritical downstream flow; and (ii) below which no steady downstream 
flow is possible. In the actual nume!ical integration of the differential equation, it 
is very difficult to obtain a value for h: such that f13 = S; ; but it is possible to adjust 
the process of decrementing k, until &+S;. In  the course of such calculations, i t  
may happen that for a new value of Lo the height & vanishes a;.t some point 2 < g2 
and g3 cannot be calculated. We take such a result to mean that h, has been decreased 
to a value below &. This difficulty in obtaining a precise value of 6: is well known 
and often occurs in the numerical process of finding a special solution which passes 
through a critical point, i.e. when the flow goes from subcfitical to supercritical. In 
summary, while i t  is very difficult to obtain the value h: such that f13 = S;, by 
adjusting each increment in the process of calculations we may establish (i) a value 
of &, jyst above h: such that g3+S; as nearly as desired and (ii) ,a value of A, just 
below h,* for which a steady flow does not exist. The actual value of h: will be between 
these values, which can be made as close as desired. The process can be repeated for 
various values of F ; a plot of the minimum height & versus F is shown in figure 2 and 
represents the combinations of far-upstream conditions (fi,, F) which render the 
downstream flow supercritical for fixed in (5.13). Also shown in figure 2 are 
the experimental points of Sivakumaran et al. (1983), which are equivalent to the 
combination of columns 1 and 3 of table 1. For purposes of comparisons, the plot 
of minimum height versus F calculated from the elementary theory is also given in 
figure 2. [Recall that the nature of the elementary theory was discussed in the first 
paragraph of this section.] It is interesting to observe the closeness of the curve of 
the elementary theory to that of the direct theory, especially in the range of very 
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slow flow rate. However, such a close agreement is not likely in the presence of more 
drastic bottom irregularities (e.g. several humps of different heights in region 11), as 
the elementary theory is not ‘ geometry dependent’ and will give the same curve for 
any bottom surface with the same maximum height. 

The results reported here were obtained in’the course of research supported by the 
Fluid Mechanics Program of the U.S. Office of Naval Research under Contract 
N00014-76-C-0474, Project NR 062-534 with the University of California, Berkeley. 
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